Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes
نویسندگان
چکیده
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
منابع مشابه
Metagenomic analysis of buffalo rumen microbiome: Effect of roughage diet on Dormancy and Sporulation genes
Buffalo rumen microbiome experiences a variety of diet stress and represents reservoir of Dormancy and Sporulation genes. However, the information on genomic responses to such conditions is very limited. The Ion Torrent PGM next generation sequencing technology was used to characterize general microbial diversity and the repertoire of microbial genes present, including genes associated with Dor...
متن کاملPeptidoglycan Remodeling and Conversion of an Inner Membrane into an Outer Membrane during Sporulation
Two hallmarks of the Firmicute phylum, which includes the Bacilli and Clostridia classes, are their ability to form endospores and their "Gram-positive" single-membraned, thick-cell-wall envelope structure. Acetonema longum is part of a lesser-known family (the Veillonellaceae) of Clostridia that form endospores but that are surprisingly "Gram negative," possessing both an inner and outer membr...
متن کاملGenomic-Based Identification of the Sporulation Restoring Gene in Degenerate Clostridium Acetobutylicum Strains
There is a renewed interest in the study of Clostridium acetobutylicum due to its applicability in renewable and “greener” production methods for alternative fuels and industrial solvents. Furthermore, due to significant advances in genetic technologies, C. acetobutylicum has ostensibly become a model clostridia for studying other solventogenic and pathogenic clostridia. Of considerable interes...
متن کاملGlobal Analysis of the Sporulation Pathway of Clostridium difficile
The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they a...
متن کاملA genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia.
The class Clostridia in the phylum Firmicutes (formerly low-G+C Gram-positive bacteria) includes diverse bacteria of medical, environmental and biotechnological importance. The Selenomonas-Megasphaera-Sporomusa branch, which unifies members of the Firmicutes with Gram-negative-type cell envelopes, was recently moved from Clostridia to a separate class Negativicutes. However, draft genome sequen...
متن کامل